Optimal Power Flow with AMPL and Python - Bus Injection Model (BIM)#

opf2.ipynb Open In Colab Kaggle Gradient Open In SageMaker Studio Lab Hits

Description: Optimal Power Flow

Tags: AMPL, amplpy, Optimal Power Flow, Python

Notebook author: Nicolau Santos <nicolau@ampl.com>

# Install dependencies
%pip install -q amplpy pandas
# Google Colab & Kaggle integration
from amplpy import AMPL, ampl_notebook

ampl = ampl_notebook(
    modules=["coin"],  # modules to install
    license_uuid="default",  # license to use
)  # instantiate AMPL object and register magics

Introduction#

Content will be available soon!

Problem description#

\[\begin{split} \begin{split} \min \enspace & \sum_{i \in G}(\text{const} + \text{linear}P_i^G + \text{quad}(P_i^G)^2) \\ \text{s.t.} \enspace & P_i(V, \delta) = P_i^G - P_i^L, \forall i \in N \\ & Q_i(V, \delta) = Q_i^G - Q_i^L, \forall i \in N \\ & P_i^{G,min} \leq P_i^{G} \leq P_i^{G,max}, \forall i \in G \\ & Q_i^{G,min} \leq Q_i^{G} \leq Q_i^{G,max}, \forall i \in G \\ & V_i^{min} \leq P_i \leq V_i^{max}, \forall i \in N \\ & \delta_i^{min} \leq \delta_i \leq \delta_i^{max}, \forall i \in N \\ \end{split} \end{split}\]
\[P_i(V, \delta) = V_i \sum_{k=1}^{N}V_k(G_{ik}\cos(\delta_i-\delta_k) + B_{ik}\sin(\delta_i-\delta_k)), \forall i \in N\]
\[Q_i(V, \delta) = V_i \sum_{k=1}^{N}V_k(G_{ik}\sin(\delta_i-\delta_k) - B_{ik}\cos(\delta_i-\delta_k)), \forall i \in N\]

AMPL model#

%%writefile opf.mod
# data

set N;                              # set of buses in the network 
param nL;                           # number of branches in the network
set L within 1..nL cross N cross N; # set of branches in the network
set GEN within N;                   # set of generator buses
set REF within N;                   # set of reference (slack) buses
set YN :=                           # index of the bus admittance matrix
    setof {i in N} (i,i) union 
    setof {(i,k,l) in L} (k,l) union
    setof {(i,k,l) in L} (l,k);

# bus data

param V0        {N}; # initial voltage magnitude
param delta0    {N}; # initial voltage angle
param PL        {N}; # real power load
param QL        {N}; # reactive power load
param g_s       {N}; # shunt conductance
param b_s       {N}; # shunt susceptance

# lower and upper bounds
param V_min     {N};
param V_max     {N};
param delta_min {N};
param delta_max {N};


# generator data

param PG0    {GEN}; # initial real power generation
param QG0    {GEN}; # initial reactive power generation
param const  {GEN}; # constant cost of a given generator
param linear {GEN}; # linear cost of a given generator
param quad   {GEN}; # quadratic cost of a given generator

# lower and upper bounds
param PG_min {GEN};
param PG_max {GEN};
param QG_min {GEN};
param QG_max {GEN};


# branch data

param T    {L}; # initial voltage ratio
param phi  {L}; # initial phase angle
param R    {L}; # branch resistance
param X    {L}; # branch reactance
param g_sh {L}; # shunt conductance
param b_sh {L}; # shunt susceptance

param g {(l,k,m) in L} := R[l,k,m]/(R[l,k,m]^2 + X[l,k,m]^2);  # series conductance
param b {(l,k,m) in L} := -X[l,k,m]/(R[l,k,m]^2 + X[l,k,m]^2); # series susceptance

# bus admittance matrix real part
param G {(i,k) in YN} =
    if (i == k) then (
        g_s[i] +
        sum{(l,i,u) in L} (g[l,i,u] + g_sh[l,i,u]/2)/T[l,i,u]**2 +
        sum{(l,u,i) in L} (g[l,u,i] + g_sh[l,u,i]/2)
    )
    else (
        -sum{(l,i,k) in L} ((
            g[l,i,k]*cos(phi[l,i,k])-b[l,i,k]*sin(phi[l,i,k])
        )/T[l,i,k]) -
        sum{(l,k,i) in L} ((
            g[l,k,i]*cos(phi[l,k,i])+b[l,k,i]*sin(phi[l,k,i])
        )/T[l,k,i])
    );

# bus admittance matrix imaginary part
param B {(i,k) in YN} =
    if (i == k) then (
        b_s[i] +
        sum{(l,i,u) in L} (b[l,i,u] + b_sh[l,i,u]/2)/T[l,i,u]**2 +
        sum{(l,u,i) in L} (b[l,u,i] + b_sh[l,u,i]/2)
    )
    else (
        -sum{(l,i,k) in L} (
            g[l,i,k]*sin(phi[l,i,k])+b[l,i,k]*cos(phi[l,i,k])
        )/T[l,i,k] -
        sum{(l,k,i) in L} (
            -g[l,k,i]*sin(phi[l,k,i])+b[l,k,i]*cos(phi[l,k,i])
        )/T[l,k,i]
    );


# decision variables with lower bounds, upper bounds and initial guess

var V     {i in N} >= V_min[i],     <= V_max[i]     := V0[i];     # voltage magnitude
var delta {i in N} >= delta_min[i], <= delta_max[i] := delta0[i]; # voltage angle

var PG {i in GEN} >= PG_min[i], <= PG_max[i] := PG0[i]; # real power generation
var QG {i in GEN} >= QG_min[i], <= QG_max[i] := QG0[i]; # reactive power generation


# real power injection
var P {i in N} =
    V[i] * sum{(i,k) in YN} V[k] * (
        G[i,k] * cos(delta[i] - delta[k]) +
        B[i,k] * sin(delta[i] - delta[k])
    );

# reactive power injection
var Q {i in N} =
    V[i] * sum{(i,k) in YN} V[k] * (
        G[i,k] * sin(delta[i] - delta[k]) -
        B[i,k] * cos(delta[i] - delta[k])
    );


# objective

minimize generation_cost:
    sum{i in GEN} (const[i] + PG[i] * linear[i] + (PG[i] ** 2) * quad[i]);


# constraints

s.t. p_flow {i in N}:
    P[i] == (if (i in GEN) then PG[i] else 0) - PL[i];

s.t. q_flow {i in N}:
    Q[i] == (if (i in GEN) then QG[i] else 0) - QL[i];

s.t. fixed_angles {i in REF}:
    delta[i] == delta0[i];

s.t. fixed_voltages {i in REF}:
    V[i] == V0[i];
Overwriting opf.mod

Numerical example#

df_bus = pd.DataFrame(
	[
		[1, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0],
		[2, 0.0, 0.0, 0.0, 0.3, 0.95, 1.05],
		[3, 0.0, 0.0, 0.05, 0.0, 0.95, 1.05],
		[4, 0.9, 0.4, 0.0, 0.0, 0.95, 1.05],
		[5, 0.239, 0.129, 0.0, 0.0, 0.95, 1.05]
	],
	columns=[
		"bus", "PL", "QL", "g_s", "b_s", "V_min", "V_max"
	]
).set_index("bus")

df_branch = pd.DataFrame(
	[
		[1, 1, 2, 0.0, 0.3, 0.0, 0.0, 1.0, 0.0],
		[2, 1, 3, 0.023, 0.145, 0.0, 0.04, 1.0, 0.0],
		[3, 2, 4, 0.006, 0.032, 0.0, 0.01, 1.0, 0.0],
		[4, 3, 4, 0.02, 0.26, 0.0, 0.0, 1.0, -3.0],
		[5, 3, 5, 0.0, 0.32, 0.0, 0.0, 0.98, 0.0],
		[6, 4, 5, 0.0, 0.5, 0.0, 0.0, 1.0, 0.0]
	],
	columns=[
		"row", "from", "to", "R", "X", "g_sh", "b_sh", "T", "phi"
	]
).set_index(["row", "from", "to"])

df_gen = pd.DataFrame(
	[
		[1, float(-inf), float(inf), float(-inf), float(inf), 0.0, 0.35, 0.0],
		[3, 0.10, 0.40, -0.20, 0.30, 0.0, 0.20, 0.40],
		[4, 0.05, 0.40, -0.20, 0.20, 0.0, 0.30, 0.50]
	],
	columns=["bus", "PG_min", "PG_max", "QG_min", "QG_max", "const", "linear", "quad"]
).set_index("bus")


ref = [1]

#print(df_bus)
#print(df_branch)
#print(df_gen)
# data preprocessing

ampl_bus = pd.DataFrame()
cols = ["PL", "QL", "g_s", "b_s", "V_min", "V_max"]
for col in cols:
	ampl_bus.loc[:, col] = df_bus.loc[:, col]
ampl_bus["V0"] = 1.0
ampl_bus["delta0"] = 0.0
ampl_bus["delta_min"] = -180.0
ampl_bus["delta_max"] = 180.0

ampl_branch = pd.DataFrame()
ampl_branch = df_branch.copy()

ampl_gen = df_gen.copy()
ampl_gen["PG0"] = 0.0
ampl_gen["QG0"] = 0.0

# convert degrees to radians
ampl_bus["delta0"] = ampl_bus["delta0"].apply(radians)
ampl_bus["delta_min"] = ampl_bus["delta_min"].apply(radians)
ampl_bus["delta_max"] = ampl_bus["delta_max"].apply(radians)
ampl_branch["phi"] = ampl_branch["phi"].apply(radians)

print(ampl_bus)
print(ampl_branch)
print(ampl_gen)
print(ref)
        PL     QL   g_s  b_s  V_min  V_max   V0  delta0  delta_min  delta_max
bus                                                                          
1    0.000  0.000  0.00  0.0   1.00   1.00  1.0     0.0  -3.141593   3.141593
2    0.000  0.000  0.00  0.3   0.95   1.05  1.0     0.0  -3.141593   3.141593
3    0.000  0.000  0.05  0.0   0.95   1.05  1.0     0.0  -3.141593   3.141593
4    0.900  0.400  0.00  0.0   0.95   1.05  1.0     0.0  -3.141593   3.141593
5    0.239  0.129  0.00  0.0   0.95   1.05  1.0     0.0  -3.141593   3.141593
                 R      X  g_sh  b_sh     T      phi
row from to                                         
1   1    2   0.000  0.300   0.0  0.00  1.00  0.00000
2   1    3   0.023  0.145   0.0  0.04  1.00  0.00000
3   2    4   0.006  0.032   0.0  0.01  1.00  0.00000
4   3    4   0.020  0.260   0.0  0.00  1.00 -0.05236
5   3    5   0.000  0.320   0.0  0.00  0.98  0.00000
6   4    5   0.000  0.500   0.0  0.00  1.00  0.00000
     PG_min  PG_max  QG_min  QG_max  const  linear  quad  PG0  QG0
bus                                                               
1      -inf     inf    -inf     inf    0.0    0.35   0.0  0.0  0.0
3      0.10     0.4    -0.2     0.3    0.0    0.20   0.4  0.0  0.0
4      0.05     0.4    -0.2     0.2    0.0    0.30   0.5  0.0  0.0
[1]
def opf_run(bus, branch, gen, ref):

	# initialyze AMPL and read the model
	ampl = AMPL()
	ampl.read("opf.mod")

	# load the data
	ampl.set_data(bus, "N")
	ampl.param["nL"] = branch.shape[0]
	ampl.set_data(branch, "L")
	ampl.set_data(gen, "GEN")
	ampl.set["REF"] = ref

	# uncomment to show expanded problem
	#ampl.eval("solexpand;")

	# uncomment to show admittance matrix
	#ampl.eval("display G,B;")

	ampl.solve(solver=SOLVER)

	solve_result = ampl.get_value("solve_result")
	if solve_result != "solved":
		print("WARNING: solver exited with %s status." %(solve_result,))

	obj = ampl.obj["generation_cost"].value()
	ma = ampl.get_data("V", "delta").to_pandas()
	pg = ampl.get_data("PG", "QG").to_pandas()

	return obj, ma, pg

obj, ma, pg = opf_run(ampl_bus, ampl_branch, ampl_gen, ref)

# convert radians back to degrees
ma["delta"] = ma["delta"].apply(degrees)

# print results
print("generation cost:", obj)
print(ma)
print(pg)
Ipopt 3.12.13: 

******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
 Ipopt is released as open source code under the Eclipse Public License (EPL).
         For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************

This is Ipopt version 3.12.13, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).

Number of nonzeros in equality constraint Jacobian...:       62
Number of nonzeros in inequality constraint Jacobian.:        0
Number of nonzeros in Lagrangian Hessian.............:       38

Total number of variables............................:       14
                     variables with only lower bounds:        0
                variables with lower and upper bounds:       12
                     variables with only upper bounds:        0
Total number of equality constraints.................:       10
Total number of inequality constraints...............:        0
        inequality constraints with only lower bounds:        0
   inequality constraints with lower and upper bounds:        0
        inequality constraints with only upper bounds:        0

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   0  4.2324719e-02 6.47e-01 4.52e-02  -1.0 0.00e+00    -  0.00e+00 0.00e+00   0
   1  4.0623606e-01 3.61e-02 5.17e-01  -1.0 8.37e-01    -  9.80e-01 1.00e+00f  1
   2  4.1018715e-01 1.30e-04 1.37e-02  -1.7 6.02e-02    -  1.00e+00 1.00e+00h  1
   3  4.0744338e-01 5.79e-05 2.05e-02  -2.5 3.18e-02    -  9.82e-01 1.00e+00h  1
   4  4.0511863e-01 1.50e-04 2.57e-03  -3.8 5.31e-02    -  9.83e-01 1.00e+00h  1
   5  4.0456520e-01 1.92e-04 6.80e-05  -3.8 4.51e-02    -  1.00e+00 1.00e+00h  1
   6  4.0424502e-01 7.31e-04 2.73e-03  -5.7 8.44e-02    -  7.20e-01 1.00e+00h  1
   7  4.0416214e-01 3.04e-04 1.39e-04  -5.7 5.66e-02    -  9.80e-01 1.00e+00h  1
   8  4.0414750e-01 3.11e-05 2.23e-06  -5.7 1.97e-02    -  1.00e+00 1.00e+00h  1
   9  4.0414754e-01 7.05e-08 1.56e-08  -5.7 8.23e-04    -  1.00e+00 1.00e+00h  1
iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
  10  4.0414383e-01 1.15e-06 2.09e-06  -8.6 3.49e-03    -  9.92e-01 1.00e+00h  1
  11  4.0414383e-01 1.52e-10 3.74e-11  -8.6 4.41e-05    -  1.00e+00 1.00e+00h  1

Number of Iterations....: 11

                                   (scaled)                 (unscaled)
Objective...............:   4.0414383068667636e-01    4.0414383068667636e-01
Dual infeasibility......:   3.7426345610312982e-11    3.7426345610312982e-11
Constraint violation....:   1.5229577321473897e-10    1.5229577321473897e-10
Complementarity.........:   2.6076022452054029e-09    2.6076022452054029e-09
Overall NLP error.......:   2.6076022452054029e-09    2.6076022452054029e-09


Number of objective function evaluations             = 12
Number of objective gradient evaluations             = 12
Number of equality constraint evaluations            = 12
Number of inequality constraint evaluations          = 0
Number of equality constraint Jacobian evaluations   = 12
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations             = 11
Total CPU secs in IPOPT (w/o function evaluations)   =      0.004
Total CPU secs in NLP function evaluations           =      0.000

EXIT: Optimal Solution Found.
 
Ipopt 3.12.13: Optimal Solution Found

suffix ipopt_zU_out OUT;
suffix ipopt_zL_out OUT;
generation cost: 0.40414383068667636
          V     delta
1  1.000000  0.000000
2  0.982697 -7.498240
3  0.964150 -4.223082
4  0.969636 -8.204157
5  0.950000 -8.640602
         PG        QG
1  0.946145  0.248706
3  0.194654 -0.072208
4  0.057509  0.199998

Conclusion#

Bibliography#

Stephen Frank & Steffen Rebennack (2016) An introduction to optimal power flow: Theory, formulation, and examples, IIE Transactions, 48:12, 1172-1197.